Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.

Identifieur interne : 001707 ( Main/Exploration ); précédent : 001706; suivant : 001708

Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.

Auteurs : Jun Urano [États-Unis] ; Tatsuhiro Sato ; Tomohiko Matsuo ; Yoko Otsubo ; Masayuki Yamamoto ; Fuyuhiko Tamanoi

Source :

RBID : pubmed:17360675

Descripteurs français

English descriptors

Abstract

Rheb is a unique member of the Ras superfamily GTP-binding proteins. We as well as others previously have shown that Rheb is a critical component of the TSC/TOR signaling pathway. In fission yeast, Rheb is encoded by the rhb1 gene. Rhb1p is essential for growth and directly interacts with Tor2p. In this article, we report identification of 22 single amino acid changes in the Tor2 protein that enable growth in the absence of Rhb1p. These mutants also exhibit decreased mating efficiency. Interestingly, the mutations are located in the C-terminal half of the Tor2 protein, clustering mainly within the FAT and kinase domains. We noted some differences in the effect of a mutation in the FAT domain (L1310P) and in the kinase domain (E2221K) on growth and mating. Although the Tor2p mutations bypass Rhb1p's requirement for growth, they are incapable of suppressing Rhb1p's requirement for resistance to stress and toxic amino acids, pointing to multiple functions of Rhb1p. In mammalian systems, we find that mammalian target of rapamycin (mTOR) carrying analogous mutations (L1460P or E2419K), although sensitive to rapamycin, exhibits constitutive activation even when the cells are starved for nutrients. These mutations do not show significant difference in their ability to form complexes with Raptor, Rictor, or mLST8. Furthermore, we present evidence that mutant mTOR can complex with wild-type mTOR and that this heterodimer is active in nutrient-starved cells.

DOI: 10.1073/pnas.0608510104
PubMed: 17360675
PubMed Central: PMC1805553


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.</title>
<author>
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</author>
<author>
<name sortKey="Matsuo, Tomohiko" sort="Matsuo, Tomohiko" uniqKey="Matsuo T" first="Tomohiko" last="Matsuo">Tomohiko Matsuo</name>
</author>
<author>
<name sortKey="Otsubo, Yoko" sort="Otsubo, Yoko" uniqKey="Otsubo Y" first="Yoko" last="Otsubo">Yoko Otsubo</name>
</author>
<author>
<name sortKey="Yamamoto, Masayuki" sort="Yamamoto, Masayuki" uniqKey="Yamamoto M" first="Masayuki" last="Yamamoto">Masayuki Yamamoto</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17360675</idno>
<idno type="pmid">17360675</idno>
<idno type="doi">10.1073/pnas.0608510104</idno>
<idno type="pmc">PMC1805553</idno>
<idno type="wicri:Area/Main/Corpus">001718</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001718</idno>
<idno type="wicri:Area/Main/Curation">001718</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001718</idno>
<idno type="wicri:Area/Main/Exploration">001718</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.</title>
<author>
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</author>
<author>
<name sortKey="Matsuo, Tomohiko" sort="Matsuo, Tomohiko" uniqKey="Matsuo T" first="Tomohiko" last="Matsuo">Tomohiko Matsuo</name>
</author>
<author>
<name sortKey="Otsubo, Yoko" sort="Otsubo, Yoko" uniqKey="Otsubo Y" first="Yoko" last="Otsubo">Yoko Otsubo</name>
</author>
<author>
<name sortKey="Yamamoto, Masayuki" sort="Yamamoto, Masayuki" uniqKey="Yamamoto M" first="Masayuki" last="Yamamoto">Masayuki Yamamoto</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Dimerization (MeSH)</term>
<term>GTP Phosphohydrolases (genetics)</term>
<term>Humans (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Point Mutation (genetics)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Species Specificity (MeSH)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dimérisation (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Mutation ponctuelle (génétique)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>dGTPases (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GTP Phosphohydrolases</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Point Mutation</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation ponctuelle</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Transduction du signal</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Tertiary</term>
<term>Species Specificity</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Spécificité d'espèce</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rheb is a unique member of the Ras superfamily GTP-binding proteins. We as well as others previously have shown that Rheb is a critical component of the TSC/TOR signaling pathway. In fission yeast, Rheb is encoded by the rhb1 gene. Rhb1p is essential for growth and directly interacts with Tor2p. In this article, we report identification of 22 single amino acid changes in the Tor2 protein that enable growth in the absence of Rhb1p. These mutants also exhibit decreased mating efficiency. Interestingly, the mutations are located in the C-terminal half of the Tor2 protein, clustering mainly within the FAT and kinase domains. We noted some differences in the effect of a mutation in the FAT domain (L1310P) and in the kinase domain (E2221K) on growth and mating. Although the Tor2p mutations bypass Rhb1p's requirement for growth, they are incapable of suppressing Rhb1p's requirement for resistance to stress and toxic amino acids, pointing to multiple functions of Rhb1p. In mammalian systems, we find that mammalian target of rapamycin (mTOR) carrying analogous mutations (L1460P or E2419K), although sensitive to rapamycin, exhibits constitutive activation even when the cells are starved for nutrients. These mutations do not show significant difference in their ability to form complexes with Raptor, Rictor, or mLST8. Furthermore, we present evidence that mutant mTOR can complex with wild-type mTOR and that this heterodimer is active in nutrient-starved cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17360675</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>104</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.</ArticleTitle>
<Pagination>
<MedlinePgn>3514-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Rheb is a unique member of the Ras superfamily GTP-binding proteins. We as well as others previously have shown that Rheb is a critical component of the TSC/TOR signaling pathway. In fission yeast, Rheb is encoded by the rhb1 gene. Rhb1p is essential for growth and directly interacts with Tor2p. In this article, we report identification of 22 single amino acid changes in the Tor2 protein that enable growth in the absence of Rhb1p. These mutants also exhibit decreased mating efficiency. Interestingly, the mutations are located in the C-terminal half of the Tor2 protein, clustering mainly within the FAT and kinase domains. We noted some differences in the effect of a mutation in the FAT domain (L1310P) and in the kinase domain (E2221K) on growth and mating. Although the Tor2p mutations bypass Rhb1p's requirement for growth, they are incapable of suppressing Rhb1p's requirement for resistance to stress and toxic amino acids, pointing to multiple functions of Rhb1p. In mammalian systems, we find that mammalian target of rapamycin (mTOR) carrying analogous mutations (L1460P or E2419K), although sensitive to rapamycin, exhibits constitutive activation even when the cells are starved for nutrients. These mutations do not show significant difference in their ability to form complexes with Raptor, Rictor, or mLST8. Furthermore, we present evidence that mutant mTOR can complex with wild-type mTOR and that this heterodimer is active in nutrient-starved cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Urano</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Tatsuhiro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsuo</LastName>
<ForeName>Tomohiko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Otsubo</LastName>
<ForeName>Yoko</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Masayuki</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA41996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C513100">tor2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C412832">Rhb1 protein, S pombe</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
<ArticleId IdType="pii">0608510104</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0608510104</ArticleId>
<ArticleId IdType="pmc">PMC1805553</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1991 Nov 11;19(21):6052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1658751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Jul 22;23(33):5654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Aug 15;334 ( Pt 1):261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9693128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 May 14;284(5417):1161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10325225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Clin Nutr Metab Care. 2005 Jan;8(1):67-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15586002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Jan;37(1):19-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15624019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2005 Feb;16(1):29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 24;280(25):23433-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15899889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 1;14(19):2851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2006 Apr;16(4):206-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16516475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 May 22;580(12):2821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jun;173(2):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 21;281(29):19793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 25;281(34):24293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Sep 19;16(18):1865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Oct 6;127(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Oct 15;20(20):2820-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 7;275(1):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Nov 14;24(50):7475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16288294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Jul 1;60(13):3504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10910062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Sep;41(6):1339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11580838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Jan 30;1542(1-3):41-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11853878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2002 Sep 12;21(41):6356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12214276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2002 Oct;3(10):988-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Neurol. 2003 Nov;29(5):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 16;279(16):15719-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Matsuo, Tomohiko" sort="Matsuo, Tomohiko" uniqKey="Matsuo T" first="Tomohiko" last="Matsuo">Tomohiko Matsuo</name>
<name sortKey="Otsubo, Yoko" sort="Otsubo, Yoko" uniqKey="Otsubo Y" first="Yoko" last="Otsubo">Yoko Otsubo</name>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<name sortKey="Yamamoto, Masayuki" sort="Yamamoto, Masayuki" uniqKey="Yamamoto M" first="Masayuki" last="Yamamoto">Masayuki Yamamoto</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001707 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001707 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17360675
   |texte=   Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17360675" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020